初二数学教案:勾股定理的综合应用
2017-04-20来源:

一、利用勾股定理进行计算

1.求面积

例1:如图1,在等腰△ABC中,腰长AB=10cm,底BC=16cm,试求这个三角形面积。

析解:若能求出这个等腰三角形底边上的高,就可以求出这个三角形面积。而由等腰三角形"三线合一"性质,可联想作底边上的高AD,此时D也为底边的中点,这样在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以这个三角形面积为 ×BC×AD= ×16×6=48 cm2。

2.求边长

例2:如图2,在△ABC中,∠C=135?,BC= ,AC=2,试求AB的长。

析解:题中没有直角三角形,不能直接用勾股定理,可考虑过点B作BD⊥AC,交AC的延长线于D点,构成Rt△CBD和Rt△ABD。在Rt△CBD中,因为∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC= ,根据勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD= AC+ CD=3。在Rt△ABD中,由勾股定理得AB2= AD2+BD2=32+12=10,所以AB= 。

点评:这两道题有一个共同的特征,都没有现成的直角三角形,都是通过添加适当的辅助线,巧妙构造直角三角形,借助勾股定理来解决问题的,这种解决问题的方法里蕴含着数学中很重要的转化思想,请同学们要留心。

二、利用勾股定理的逆定理判断直角三角形

例3:已知a,b,c为△ABC的三边长,且满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状。

析解:由于所给条件是关于a,b,c的一个等式,要判断△ABC的形状,设法求出式中的a,b,c的值或找出它们之间的关系(相等与否)等,因此考虑利用因式分解将所给式子进行变形。因为a2+b2+c2+338=10a+24b+26c,所以a2-10a+ b2-24b+c2-26c+338=0,所以a2-10a+25+ b2-24b+144+ c2-26c+169=0,所以(a-5)2+ (b-12)2+ (c-13)2=0。因为(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因为52+122=132,所以a2+ b2= c2,即△ABC是直角三角形。

点评:用代数方法来研究几何问题是勾股定理的逆定理的"数形结合思想"的重要体现。

三、利用勾股定理说明线段平方和、差之间的关系

例4:如图3,在△ABC中,∠C=90?,D是AC的中点,DE⊥AB于E点,试说明:BC2=BE2-AE2。

析解:由于要说明的是线段平方差问题,故可考虑利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可连结BD来解决。因为∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2= DE2+AE2。又D是AC的中点,所以AD=CD。故BC2+CD2= BC2+ A D2= BC2+ DE2+AE2= BE2+ DE2,所以BE2= BC2+ AE2,所以BC2=BE2-AE2。

点评:若所给题目的已知或结论中含有线段的平方和或平方差关系时,则可考虑构造直角三角形,利用勾股定理来解决问题。

推荐信息
Baidu
map