宁波大学机械工程与力学学院2016年博士研究生自命题考试大纲(弹性力学)
2015-10-30来源:宁波大学网

《弹性力学》考试大纲

一、应力状态理论

体力和面力、应力和一点的应力状态、斜微分面上的应力、平衡微分方程应力边界条件、坐标变换下的应力分量、主应力与应力张量不变量、应力二次曲面、最大剪切应力

二、应变状态理论

位移分量和应变分量两者的关系、相对位移张量转动分量、坐标变换时应变分量的变换、主应变应变张量不变量、应变二次曲面、体应变、应变协调方程

三、应力和应变的关系

应力和应变最一般的关系广义胡克定律、弹性体变形过程中的功和能、各向异性弹性体、各向同性弹性体、弹性常数的测定、各向同性体应变能密度的表达式

四、弹性力学问题的建立和一般原理

弹性力学的基本方程及其边值问题、位移解法和以位移表示的平衡(或运动)微分方程、应力解法和以应力表示的应变协调方程、在体力为常量时一些物理量的特性、弹性力学的一般原理

五、平面问题的直角坐标解答

平面应变问题、平面应力问题、应力解法把平面问题归结为双调和方程的边值问题、用多项式解平面问题、悬臂梁一端受集中力作用、悬臂梁受均匀分布荷载作用、简支梁受均匀分布荷载作用、三角形水坝、矩形梁弯曲的三角级数解法、用傅里叶变换求解平面问题、艾里应力函数的物理意义

六、平面问题的极坐标解答

平面问题的极坐标方程、轴对称应力和对应的位移、厚壁圆筒受均匀分布压力作用、曲梁的纯弯曲、曲梁一端受径向集中力作用、具有小圆孔的平板的均匀拉伸、尖劈顶端受集中力或集中力偶作用、几个弹性半平面问题的解答

七、柱形杆的扭转和弯曲

扭转问题的位移解法圣维南扭转函数、扭转问题的应力解法普朗特应力函数、扭转问题的薄膜比拟法、椭圆截面杆的扭转、带半圆形槽的圆轴的扭转、厚壁圆筒的扭转、矩形截面杆的扭转、薄壁杆的扭转、柱形杆的弯曲、椭圆截面杆的弯曲、矩形截面杆的弯曲

八、空间问题的解答

基本方程的柱坐标和球坐标形式、位移场的势函数分解式、拉梅应变势空心圆球内外壁受均布压力作用、齐次拉梅方程的通解、无限体内-点受集中力作用、半无限体表面受法向集中力作用、半无限体表面受切向集中力作用、半无限体表面圆形区域内受均匀分布压力作用、两弹性体之间的接触压力

九、热应力

热传导方程及其定解条件、热膨胀和由此产生的热应力、热应力的简单问题、热弹性力学的基本方程、位移解法、圆球体的球对称热应力、热弹性应变势的引用、圆筒的轴对称热应力

、应力解法、热弹性力学平面问题的应力解法艾里热应力函数

十、弹性波的传播

无限弹性介质中的纵波和横波、平面波、无限弹性介质中的膨胀波和畸变波、表面波、弹性介质中的球面波、平面波在平面边界上的反射和折射

十一、弹性薄板的弯曲

板的基本关系式和基本方程的建立、薄板的边界条件、简支边矩形薄板的纳维解、矩形薄板的莱维解、薄板弯曲的叠加法、基本关系式和基本方程的极坐标形式、圆形薄板的轴对称弯曲

十二、弹性力学的变分解法

弹性体的虚功原理、贝蒂互换定理、位移变分方程最小势能原理、最小势能原理、弹性力学的广义变分原理、哈密顿变分原理

主要参考书目:

1.弹性力学 上下册 徐芝纶 高等教育出版社 2006

2.弹性力学引论 武际可 北京大学出版社 2003

3.弹性力学习题及解答 徐秉业 王建学 清华大学出版社 2007

4.Theory of Elasticity S.P. Timoshenko, J.N. Goodier 清华大学出版社 2004

5.弹性力学 吴家龙 同济大学出版社 1993

更多信息请查看学历考试网

推荐信息
Baidu
map