下面小编就为大家带来一篇javascript小数精度丢失的完美解决方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。
原因:js按照2进制来处理小数的加减乘除,在arg1的基础上 将arg2的精度进行扩展或逆扩展匹配,所以会出现如下情况.
javascript(js)的小数点加减乘除问题,是一个js的bug如0.3*1 = 0.2999999999等,下面列出可以完美求出相应精度的四种js算法
代码如下:
function accDiv(arg1,arg2){
var t1=0,t2=0,r1,r2;
try{t1=arg1.toString().split(".")[1].length}catch(e){}
try{t2=arg2.toString().split(".")[1].length}catch(e){}
with(Math){
r1=Number(arg1.toString().replace(".",""))
r2=Number(arg2.toString().replace(".",""))
return accMul((r1/r2),pow(10,t2-t1));
}
} /* 何问起 hovertree.com */
//乘法
function accMul(arg1,arg2)
{
var m=0,s1=arg1.toString(),s2=arg2.toString();
try{m+=s1.split(".")[1].length}catch(e){}
try{m+=s2.split(".")[1].length}catch(e){}
return Number(s1.replace(".",""))*Number(s2.replace(".",""))/Math.pow(10,m)
}
//加法
function accAdd(arg1,arg2){
var r1,r2,m;
try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
m=Math.pow(10,Math.max(r1,r2))
return (arg1*m+arg2*m)/m
}
//减法
function Subtr(arg1,arg2){
var r1,r2,m,n;
try{r1=arg1.toString().split(".")[1].length}catch(e){r1=0}
try{r2=arg2.toString().split(".")[1].length}catch(e){r2=0}
m=Math.pow(10,Math.max(r1,r2));
n=(r1>=r2)?r1:r2;
return ((arg1*m-arg2*m)/m).toFixed(n);
}
以上这篇javascript小数精度丢失的完美解决方法就是小编分享给大家的全部内容了,希望能给大家一个参考