海伦公式的证明
来源:188金宝搏地址 阅读:1201 次 日期:2015-07-14 16:04:31
温馨提示:188金宝搏地址 小编为您整理了“海伦公式的证明”,方便广大网友查阅!

发泡水泥板生产厂家哪家比较好

篇1:海伦公式的证明

在△ABC中∠A、∠B、∠C对应边a、b、c

O为其内切圆圆心,r为其内切圆半径,p为其半周长

有tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2=1

r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)=r

∵r=(p-a)tanA/2=(p-b)tanB/2=(p-c)tanC/2

∴ r(tanA/2tanB/2+tanB/2tanC/2+tanC/2tanA/2)

=[(p-a)+(p-b)+(p-c)]tanA/2tanB/2tanC/2

=ptanA/2tanB/2tanC/2

=r

∴p^2r^2tanA/2tanB/2tanC/2=pr^3

∴S^2=p^2r^2=(pr^3)/(tanA/2tanB/2tanC/2)

=p(p-a)(p-b)(p-c)

∴S=√p(p-a)(p-b)(p-c)

篇2:海伦公式的证明

我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为

cosC = (a^2+b^2-c^2)/2ab

S=1/2*ab*sinC

=1/2*ab*√(1-cos^2 C)

=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]

=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]

=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]

=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]

=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2

则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]

=√[p(p-a)(p-b)(p-c)]

所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

篇3:海伦公式的证明

我国宋代的数学家秦九韶也提出了“三斜求积术”。它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是的三角形,要找出它来并非易事。所以他们想到了三角形的三条边。如果这样做求三角形的面积也就方便多了。但是怎样根据三边的长度来求三角形的面积?直到南宋,我国著名的数学家秦九韶提出了“三斜求积术”。

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。“术”即方法。三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。

所谓“实”、“隅”指的是,在方程px 2=q,p为“隅”,q为“实”。以△、a,b,c表示三角形面积、大斜、中斜、小斜,所以

q=1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}

当P=1时,△ 2=q,

△=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2}

因式分解得

△ ^2=1/16[4a^2c^2-(a^2+c^2-b^2)^2]

=1/16[(c+a) ^2-b ^2][b^ 2-(c-a)^ 2]

=1/16(c+a+b)(c+a-b)(b+c-a)(b-c+a)

=1/16(c+a+b)(a+b+c-2b)(b+c+a-2a)(b+a+c-2c)

=1/16 [2p(2p-2a)(2p-2b)(2p-2c)]

=p(p-a)(p-b)(p-c)

由此可得:

S△=√[p(p-a)(p-b)(p-c)]

其中p=1/2(a+b+c)

这与海伦公式完全一致,所以这一公式也被称为“海伦-秦九韶公式”。

S=√1/4{a^2*c^2-[(a^2+c^2-b^2)/2 ]^2} .其中c>b>a.

根据海伦公式,我们可以将其继续推广至四边形的面积运算。如下题:

已知四边形ABCD为圆的内接四边形,且AB=BC=4,CD=2,DA=6,求四边形ABCD的面积

这里用海伦公式的推广

S圆内接四边形= 根号下(p-a)(p-b)(p-c)(p-d) (其中p为周长一半,a,b,c,d,为4边)

代入解得s=8√ 3

更多信息请查看文秘知识

更多信息请查看文秘知识
188金宝搏地址 手机网站地址:海伦公式的证明
由于各方面情况的不断调整与变化,188金宝搏地址 提供的所有考试信息和咨询回复仅供参考,敬请考生以权威部门公布的正式信息和咨询为准!

2025国考·省考课程试听报名

  • 报班类型
  • 姓名
  • 手机号
  • 验证码
关于我们 | 联系我们 | 人才招聘 | 网站声明 | 网站帮助 | 非正式的简要咨询 | 简要咨询须知 | 新媒体/短视频平台 | 手机站点 | 投诉建议
工业和信息化部备案号:滇ICP备2023014141号-1 云南省教育厅备案号:云教ICP备0901021 滇公网安备53010202001879号 人力资源服务许可证:(云)人服证字(2023)第0102001523号
云南网警备案专用图标
联系电话:0871-65099533/13759567129 获取招聘考试信息及咨询关注公众号:hfpxwx
咨询QQ:1093837350(9:00—18:00)版权所有:188金宝搏地址
云南网警报警专用图标
Baidu
map