在Python中使用元类的教程
来源: 阅读:747 次 日期:2015-04-30 14:48:06
温馨提示: 小编为您整理了“在Python中使用元类的教程”,方便广大网友查阅!

这篇文章主要介绍了在Python中使用元类的教程,是Python当中的基础知识,代码基于Python2.x版本,需要的朋友可以参考下

type()

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

比方说我们要定义一个Hello的class,就写一个hello.py模块:

class Hello(object):

def hello(self, name='world'):

print('Hello, %s.' % name)

当Python解释器载入hello模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个Hello的class对象,测试如下:

>>> from hello import Hello

>>> h = Hello()

>>> h.hello()

Hello, world.

>>> print(type(Hello))

<type 'type'>

>>> print(type(h))

<class 'hello.Hello'>

type()函数可以查看一个类型或变量的类型,Hello是一个class,它的类型就是type,而h是一个实例,它的类型就是class Hello。

我们说class的定义是运行时动态创建的,而创建class的方法就是使用type()函数。

type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义:

>>> def fn(self, name='world'): # 先定义函数

... print('Hello, %s.' % name)

...

>>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class

>>> h = Hello()

>>> h.hello()

Hello, world.

>>> print(type(Hello))

<type 'type'>

>>> print(type(h))

<class '__main__.Hello'>

要创建一个class对象,type()函数依次传入3个参数:

class的名称;

继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;

class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

通过type()函数创建的类和直接写class是完全一样的,因为Python解释器遇到class定义时,仅仅是扫描一下class定义的语法,然后调用type()函数创建出class。

正常情况下,我们都用class Xxx...来定义类,但是,type()函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。

metaclass

除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。

metaclass,直译为元类,简单的解释就是:

当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

连接起来就是:先定义metaclass,就可以创建类,最后创建实例。

所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

metaclass是Python面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。

我们先看一个简单的例子,这个metaclass可以给我们自定义的MyList增加一个add方法:

定义ListMetaclass,按照默认习惯,metaclass的类名总是以Metaclass结尾,以便清楚地表示这是一个metaclass:

# metaclass是创建类,所以必须从`type`类型派生:

class ListMetaclass(type):

def __new__(cls, name, bases, attrs):

attrs['add'] = lambda self, value: self.append(value)

return type.__new__(cls, name, bases, attrs)

class MyList(list):

__metaclass__ = ListMetaclass # 指示使用ListMetaclass来定制类

当我们写下__metaclass__ = ListMetaclass语句时,魔术就生效了,它指示Python解释器在创建MyList时,要通过ListMetaclass.__new__()来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

__new__()方法接收到的参数依次是:

当前准备创建的类的对象;

类的名字;

类继承的父类集合;

类的方法集合。

测试一下MyList是否可以调用add()方法:

>>> L = MyList()

>>> L.add(1)

>>> L

[1]

而普通的list没有add()方法:

>>> l = list()

>>> l.add(1)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'list' object has no attribute 'add'

动态修改有什么意义?直接在MyList定义中写上add()方法不是更简单吗?正常情况下,确实应该直接写,通过metaclass修改纯属变态。

但是,总会遇到需要通过metaclass修改类定义的。ORM就是一个典型的例子。

ORM全称“Object Relational Mapping”,即对象-关系映射,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作SQL语句。

要编写一个ORM框架,所有的类都只能动态定义,因为只有使用者才能根据表的结构定义出对应的类来。

让我们来尝试编写一个ORM框架。

编写底层模块的第一步,就是先把调用接口写出来。比如,使用者如果使用这个ORM框架,想定义一个User类来操作对应的数据库表User,我们期待他写出这样的代码:

class User(Model):

# 定义类的属性到列的映射:

id = IntegerField('id')

name = StringField('username')

email = StringField('email')

password = StringField('password')

# 创建一个实例:

u = User(id=12345, name='Michael',, password='my-pwd')

# 保存到数据库:

u.save()

其中,父类Model和属性类型StringField、IntegerField是由ORM框架提供的,剩下的魔术方法比如save()全部由metaclass自动完成。虽然metaclass的编写会比较复杂,但ORM的使用者用起来却异常简单。

现在,我们就按上面的接口来实现该ORM。

首先来定义Field类,它负责保存数据库表的字段名和字段类型:

class Field(object):

def __init__(self, name, column_type):

self.name = name

self.column_type = column_type

def __str__(self):

return '<%s:%s>' % (self.__class__.__name__, self.name)

在Field的基础上,进一步定义各种类型的Field,比如StringField,IntegerField等等:

class StringField(Field):

def __init__(self, name):

super(StringField, self).__init__(name, 'varchar(100)')

class IntegerField(Field):

def __init__(self, name):

super(IntegerField, self).__init__(name, 'bigint')

下一步,就是编写最复杂的ModelMetaclass了:

class ModelMetaclass(type):

def __new__(cls, name, bases, attrs):

if name=='Model':

return type.__new__(cls, name, bases, attrs)

mappings = dict()

for k, v in attrs.iteritems():

if isinstance(v, Field):

print('Found mapping: %s==>%s' % (k, v))

mappings[k] = v

for k in mappings.iterkeys():

attrs.pop(k)

attrs['__table__'] = name # 假设表名和类名一致

attrs['__mappings__'] = mappings # 保存属性和列的映射关系

return type.__new__(cls, name, bases, attrs)

以及基类Model:

class Model(dict):

__metaclass__ = ModelMetaclass

def __init__(self, **kw):

super(Model, self).__init__(**kw)

def __getattr__(self, key):

try:

return self[key]

except KeyError:

raise AttributeError(r"'Model' object has no attribute '%s'" % key)

def __setattr__(self, key, value):

self[key] = value

def save(self):

fields = []

params = []

args = []

for k, v in self.__mappings__.iteritems():

fields.append(v.name)

params.append('?')

args.append(getattr(self, k, None))

sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))

print('SQL: %s' % sql)

print('ARGS: %s' % str(args))

当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找__metaclass__,如果没有找到,就继续在父类Model中查找__metaclass__,找到了,就使用Model中定义的__metaclass__的ModelMetaclass来创建User类,也就是说,metaclass可以隐式地继承到子类,但子类自己却感觉不到。

在ModelMetaclass中,一共做了几件事情:

排除掉对Model类的修改;

在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误;

把表名保存到__table__中,这里简化为表名默认为类名。

在Model类中,就可以定义各种操作数据库的方法,比如save(),delete(),find(),update等等。

我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。

编写代码试试:

u = User(id=12345, name='Michael', , password='my-pwd')

u.save()

输出如下:

Found model: User

Found mapping: email ==> <StringField:email>

Found mapping: password ==> <StringField:password>

Found mapping: id ==> <IntegerField:uid>

Found mapping: name ==> <StringField:username>

SQL: insert into User (password,email,username,uid) values (?,?,?,?)

ARGS: ['my-pwd',, 'Michael', 12345]

可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。

不到100行代码,我们就通过metaclass实现了一个精简的ORM框架,完整的代码从这里下载:

最后解释一下类属性和实例属性。直接在class中定义的是类属性:

class Student(object):

name = 'Student'

实例属性必须通过实例来绑定,比如self.name = 'xxx'。来测试一下:

>>> # 创建实例s:

>>> s = Student()

>>> # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性:

>>> print(s.name)

Student

>>> # 这和调用Student.name是一样的:

>>> print(Student.name)

Student

>>> # 给实例绑定name属性:

>>> s.name = 'Michael'

>>> # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性:

>>> print(s.name)

Michael

>>> # 但是类属性并未消失,用Student.name仍然可以访问:

>>> print(Student.name)

Student

>>> # 如果删除实例的name属性:

>>> del s.name

>>> # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了:

>>> print(s.name)

Student

因此,在编写程序的时候,千万不要把实例属性和类属性使用相同的名字。

在我们编写的ORM中,ModelMetaclass会删除掉User类的所有类属性,目的就是避免造成混淆。

更多信息请查看IT技术专栏

更多信息请查看网络编程
手机网站地址:在Python中使用元类的教程
由于各方面情况的不断调整与变化, 提供的所有考试信息和咨询回复仅供参考,敬请考生以权威部门公布的正式信息和咨询为准!

2025国考·省考课程试听报名

  • 报班类型
  • 姓名
  • 手机号
  • 验证码
关于我们 | 联系我们 | 人才招聘 | 网站声明 | 网站帮助 | 非正式的简要咨询 | 简要咨询须知 | 加入群交流 | 手机站点 | 投诉建议
工业和信息化部备案号:滇ICP备2023014141号-1 云南省教育厅备案号:云教ICP备0901021 滇公网安备53010202001879号 人力资源服务许可证:(云)人服证字(2023)第0102001523号
云南网警备案专用图标
联系电话:0871-65317125(9:00—18:00) 获取招聘考试信息及咨询关注公众号:hfpxwx
咨询QQ:526150442(9:00—18:00)版权所有:
云南网警报警专用图标
Baidu
map